Perimeter Estimation of Some Discrete Sets from Horizontal and Vertical Projections

نویسندگان

  • Tamás Sámuel Tasi
  • Máté Hegedűs
چکیده

In this paper, we design neural networks to estimate the perimeter of simple and more complex discrete sets from their horizontal and vertical projections. The information extracted this way can be useful to simplify the problem of reconstructing the discrete set from its projections, which task is in focus of discrete tomography. Beside presenting experimental results with neural networks, we also reveal some statistical properties of the perimeter of the studied discrete sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tomographical aspects of L-convex polyominoes

Our main purpose is to characterize the class of L-convex polyominoes introduced in [3] by means of their horizontal and vertical projections. The achieved results allow an answer to one of the most relevant questions in tomography i.e. the uniqueness of discrete sets, with respect to their horizontal and vertical projections. In this paper, by giving a characterization of L-convex polyominoes,...

متن کامل

Reconstruction of Canonical hv-Convex Discrete Sets from Horizontal and Vertical Projections

The problem of reconstructing some special hv-convex discrete sets from their two orthogonal projections is considered. In general, the problem is known to be NP-hard, but it is solvable in polynomial time if the discrete set to be reconstructed is also 8-connected. In this paper, we define an intermediate class – the class of hv-convex canonical discrete sets – and give a constructive proof th...

متن کامل

A decomposition technique for reconstructing discrete sets from four projections

The reconstruction of discrete sets from four projections is in general an NP-hard problem. In this paper we study the class of decomposable discrete sets and give an efficient reconstruction algorithm for this class using four projections. It is also shown that an arbitrary discrete set which is Q-convex along the horizontal and vertical directions and consists of several components is decompo...

متن کامل

An efficient algorithm for reconstructing binary matrices from horizontal and vertical absorbed projections

This paper studies the classical tomographical problem of the reconstruction of a binary matrix from projections in presence of absorption. In particular, we consider two projections along the horizontal and vertical directions and the mathematically interesting case of the absorption coefficient β0 = 1+ √ 5 2 . After proving some theoretical results on the switching components, we furnish a fa...

متن کامل

On the difference between solutions of discrete tomography problems

We consider the problem of reconstructing binary images from their horizontal and vertical projections. We present a condition that the projections must necessarily satisfy when there exist two disjoint reconstructions from those projections. More generally, we derive an upper bound on the symmetric difference of two reconstructions from the same projections. We also consider two reconstruction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012